

Name:

Class: _

ACTIVITY SHEET

1.3 Surface area to volume ratio

- 1 Calculate the surface-area-to-volume ratio (SA:V) of the following cubes.
 - **a** $2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}$

b $5 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm}$

c $0.3 \,\mathrm{cm} \times 0.3 \,\mathrm{cm} \times 0.3 \,\mathrm{cm}$

2 a Four cubes have side measurements 0.5 cm, 1 cm, 2 cm and 4 cm respectively. Draw each cube to scale.

b Complete the following table with the calculated surface area and volume for each cube.

Cube	SA	V	SA:V
0.5			
1			
2			
4			

- **c** What trend is shown by the ratio?
- **d** Explain the importance of a high surface-area-to-volume ratio in terms of cellular function.

Rectangle	Length	Width	Height	SA	V	SA:V
1	32	16	1			
2	16	16	2			
3	8	16	4			
4	8	8	8			

3 a Complete the following SA:V table for rectangular objects.

- **b** What happened to the surface area and volume as the height increased?
- **c** What happened to the ratio as the height increased?
- **d** What dimension of the rectangular object would allow the highest rate of diffusion?
- e Explain why leaves are long and flat.